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LunaSOX Objectives

e Survey rich data sets available on solar wind interaction with
the Moon from the Apollo ALSEP instrumentation on the
surface and upstream geospace measurements.

* Apply hybrid kinetic multiscale simulations in conjunction
with ALSEP measurements to globally model solar wind plasma
and energetic ion fluxes into the surface.

 Assess effectiveness for future missions of secondary ion mass
spectrometry (SIMS) for high-resolution and high-sensitivity
composition measurements.

* Provide surface interaction modeling and space weathering
map products for support of the upcoming and international
missions to the Moon for orbital remote sensing.



LunaSOX Relevance to NASA Strategic Goals

Strategic Sub-goal 3C: Advance scientific knowledge of the origin and history of the solar
system, the potential for life elsewhere, and the hazards and resources present as humans
explore space.

The solar wind plasma and energetic ion interaction with the Moon determines the global
distribution of volatiles within the human-accessible regolith layer and ion sputtering can be
utilized for resource mapping of the total volatile and refractory inventories. Full global 3-D
hybrid code simulations will map global surface exposure to hazardous solar particle events.

Strategic Sub-Goal 3B: Understand the Sun and its effects on Earth and the solar system.

The Moon’s remotely sensible surface and surface-accessible regolith records in its chemical
composition the history of 4.5 billion years of solar wind and cosmic rays effects on the
Earth-Moon system. This record is reduced or absent on Earth due to deflection of the solar
wind and lower-energy cosmic rays by the geomagnetic field, and due to surface changes
from active tectonism, associated volcanism, and surface weathering by atmospheric and
hydrological processes.

Strategic Goal 6: Establish a lunar return program having the maximum possible utility
for later missions to Mars and other destinations.

Mapping of chemical resources on the Moon from exogenic and internal sources prepares
the way for human missions to the surface. Understanding effects of external space radiation
on planetary surfaces and atmospheres paves the way for robotic and eventual human
exploration of other planetary bodies.
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Heliophysics Science and the Moon, Report to NASA Advisory Council -
Heliophysics Subcommittee, NP-2007-07-80-MSFC, Pub 8-40716, NASA MSFC,
Sept. 2007.

Relevant Objectives for LunaSOX

* Characterize the Near-Lunar Electromagnetic and Plasma Environment

* Interaction of Plasma with the Moon

» Characterize and Understand the Interaction of Dust and Plasma on the Surface of
the Moon and in the Lunar Exosphere

 Characterize Radiation Bombardment on the Lunar Surface and Subsurface
 History of the Sun and Cosmic Radiation

* History of the Inner Solar System According to the Lunar Cold Traps
 Analyze the Composition of the Solar Wind

And we also suggest:

Use the Moon as a heliophysics science platform to observe spatial and
spectral structure of the solar corona and near-solar dust environment



LunaSOX Mission Implementation Description

*Location: LRO-type 50-km polar orbit after initial elliptical phase for lunar wake
*Attitude control: 3-axis stabilized (ram, nadir, solar)
Adjust to direction of solar wind, magnetosphere, & lunar neutral gas flows
Prograde and retrograde imaging of Sun at hourly lunar limb occultations
* Instruments:

Low-energy ion-neutral and energetic heavy ion mass spectrometers,
magnetometer, electron reflectometer (20 kg/20 W)

UV-VIS-IR spectroscopic imagers - particular focus on near-IR for any lunar
polar surface ice bands and for solar F-corona dust (30 kg/30 W)

Measurement Strateqgy:

» Large scale lunar environment characterization in initial elliptical lunar orbit
* Primary near-lunar and remote surface measurements in circular polar orbit

* Hourly lunar limb occultations for solar F-corona, zodiacal light, and lunar
atmospheric observations — doppler shift of solar Fraunhofer lines, dust absorption



THAR'S GOLD IN THAM LUNAR HILLS
Jan 28 2006 By Stephen White

Helium 3 could hold key to the future of space exploration. It
could be the 'cash crop’ for the Moon

RUSSIA is planning to beat America back to the Moon to mine for an abundance of
untapped riches.

But it's not gold or diamonds they aim to bring back to Earth. ... a total of
1,100,000 metric tons of He3 have been deposited by the solar wind on the Moon.

The total supply in the US strategic reserves is about 29 kg, and another 187 kg Is
mixed up with natural gas in storage.

Nikolai Sevastyanov, head of Russia's giant Energia Space Corporation, said: "\We
are planning to build a permanent base on the Moon by 2015 and by 2020 we can
begin the industrial-scale delivery of helium 3."

... solar wind-implanted particles are more abundant on the far side, because
the Earth (its magnetosphere) shields the Moon's near side from the solar wind

for part of each solar orbit ... the greatest amounts of helium 3 will be found
on the far side of the Moon. DailyRecord.co.uk



Bow Shock and Magnetopause Variability

Bow Shock and Magnetopause
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Clementine Global Lunar Color Ratio Images
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[Each pixel #quals mean value of corresponding L' visible image]
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LLanded Robotic and Human Exploration — the Near Side

MARE IMBRIUN

MARE SENENITATLE

Dave Williams, NSSDC



Lunar Data Project
PDS Lunar Data Node

Restore Older Lunar Data Archived In
Inhospitable Formats

|dentify and Retrieve Unarchived Lunar Data
Make Data Generally Digitally Accessible

Avoid Repeating Experiments

Use New Data Analysis Techniqgues and Hardware
Explore Environmental Hazards

Help Define Safe Landing Sites

Dave Williams, NSSDC



ALSEP SWS>Solar Wind Spectrometer
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Apollo 12/15 ALSEP Site Parameters and SWS Data Coverage (CDAWeb")

Latitude* Longitude* Radius Magnetic Field#  SWS Dates

(°North)  (°East) (km) (nT)
Apollo12  -3.00942 -23.42458 1736.014 383<2 1969-11-19
1976-03-25
Apollo15 26.13407 3.62981  1735.477 33<3 1971-07-31
1972-06-30

*Site coordinates based on the IAU Mean Earth Polar Axis coordinate system
(Davies and Colvin, 2000).

#ALSEP magnetometer measurements (Dyal et al., 1970, 1972, 1973)

A Coordinated Data Analysis Web site for lunar-relevant data

( )

LunaSOX project would provide first full hybrid kinetic simulation of
ALSEP SWS data as correlated to upstream solar wind measurements.



Heliophysics Great Observatory - 2008

. Voyager 1 & 2
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Lunar surface sputtering by solar wind &
energetic ions generates a rich harvest of
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Figore 10.  Mass-to-charge (m/q) spectra from the AMPTE/
SULEICA instrument showing the detection of lunar ions
when it was downstream of the Moon. Adapted from Hilchen-

From Stern [1999]
and Hilchenbach et al. [1991]

bach et al. [1991].



qm  This moon-centric illustration
shows the different directional
15000 distributions to be expected for
sputtered 1ons measured by a
spacecraft detector at point P

5O l areY
@)
+

T

10000

N

(.'
(.
( H,* along the pink trajectory line.
% The sample ions, H,* and O,
(* |/~ s can originate from locii along red
K /— -\& black cycloidal origin curves.
© |/ C) ﬂ

—-20000 —15000 /S8 — 10000 - 5004 000
(%

In a 3-D plasma ion
measurement the lighter ion has
a widely distributed range of
~10000 arrival directions but the O™ ion
arrives in a relatively narrow
beam If the source Is localized
near or at the lunar surface.

O S )

%

-5000

-15000

R. E. Hartle



-
G

Normalized HE: v flux, &,
(in flow direction)

HELIUM CONCENTRATION (cm™*)
)

™~ o
-
[Hodges, 1975; P B A
1

Stern, 1999] * i - -
3 * -
10 1 ! | I T | ] 1 1 L 1 1 - l - ~ o
o° 90° 180° 270° 360° - " -

=
SUBSOLAR LONGITUDE P . |
- +F g
-

[
- e [ |
0.7 :
~02¢2 :
—0.4 -~
Log,, P, _0. ﬁh; . 72
_nﬂi
10} - <
ooy O
\
~ &
ur . v/ < §
- O/T l ‘h-....__“:‘ l?";
Model Computation for Lunar (& £ h 52

He4+ Pickup lon Flux
Hartle and Sittler, JGR, 2007



Normalized Hej v flux, ®,

(along flow axis)

Model Computation for Lunar (&
He4+ Pickup lon Flux
Hartle and Sittler, JGR, 2007



Normalized CHj v flux, ®, _ +
(along flow axis) Titan Example for CH,

Downstream PUI Cycloids
- Similar for Moon

Hartle et al., Fall AGU, 2007



Simulation of Magnetic Anomaly Interaction for SW H* and PUI O
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Dayside hemisphere distributions of surface fluxes for solar wind H* and
atmospheric pickup O* ions incident on the Moon with simulated surface
magnetic anomaly at the center. These X-Y views look in the +Z direction of bulk
solar wind flow with the solar wind magnetic field in the +Y direction. The O*
lons are swept by the solar wind into the moon in the central region around their
points of origin, while H* 1ons impact the full sun-lit disk.

A. Lipatov (2007)
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Lunar Prospector epithermal neutron count rates (Elphic et al., 2007).
Large circle denotes 85°S, and Shackleton crater (S), site of NASA’s
planned polar lunar base, is located nearly at the south pole.
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Lunar Atmospheric
Species

H
He
C
N
O
Na
S
Ar
K
Xe
CH,
N2
CO
CO,
H2
OH

PUI Density
/cc @ 1-Hz,1cm?

65
336
164
375
321

17
167
735

21
476

11
140
3.2
115
7.6
6.3

Present Neutral Density Limits
/cc [Stern 1999]

<17
2,000 (day)
<200
<600
<500
70
<150
10° (day)
17
<3000
10* (predawn)
800 (predawn)
1,000 (predawn)
1,000 (predawn)
<9,000

<105



Lunar Surface Solar Origins Explorer (LunaSSOX)

Solar Wind lon Implantation Injects

Solar Coronal Composition Into the
Lunar Surface and Solar Energetic
lons (SEP) Sputter Surface Atoms

Lunar He™ Antisolar Pickup lon Flux

Lunar Limb “Knife-
Edge” for solar
coronal occultation

Science Objectives:

* Upstream solar wind plasma ion contributions to lunar
surface volatile composition via orbital measurements

* Global distribution of volatile and refractory surface
composition via pickup ions from SEP ion sputtering

* Solar F-corona plasma composition & near-solar dust
interaction via remote spectroscopic & doppler imaging

Associated Heliophysics RFAS:

F3. Understand role of plasma and neutral interactions in
nonlinear coupling of solar system regions.

J4. Understand and characterize the space weather effects
on and within planetary environments to minimize risk ..

Mission Implementation Description:

*Number of Spacecraft : 1 or more

*Location: lunar 50-km polar orbit, day-night orientation
*Attitude control: 3-axis stabilized (ram, nadir, solar)

* Instruments:

in situ low-energy ion-neutral and energetic heavy ion
mass spectrometers , magnetometer (20 kg/20 W)

remote UV-VIS-IR spectroscopic imagers (30 kg/30 W)

Measurement Strateqy:

 Lunar orbit for near-lunar plasma ion, gas, maq, SEP

« Lunar limb occultation from orbit for solar corona obs.

Enabling and Enhancing Technoloqgy
Development:

@ High resolution plasma and neutral gas composition
spectrometers integrated to energetic ion detectors for
complete characterization of plasma/SEP interactions

@ Compact steerable high-resolution UV-VIS-IR
spectroscopic imaging system for solar F-Corona,
lunar surface & atmosphere, and other geospace
observations — not diffraction limited by s/c occulter !

@ Lightweight solar-powered spacecraft bus system for
flexible lunar orbital and solar observation operations

John F Cooper, Richard E. Hartle, Edward C. Sittler
NASA Goddard Space Flight Center, Greenbelt, Maryland
Contact: John.F.Cooper@nasa.gov (phone: 301-286-1193)




“Inner Source” Pickup lons —
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Figure 2, Mass per charge distributions of heavy pickup
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same time period as in Figure 1. A five-point renning av-
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the Inner Souice Pickup lons, the Low Salar Wind,
and Energelic Fartivles Avcelerated in CIRs

Element  Inmer Sowree® Solar Wind® CIR Particles®
3 TTI0L 1 Sl | 20005 100 31001 0400
He SOCLE2 6L LCHXCHERS
i 4 5T+ IR R1£1.1 4 BR40.25
i | 24416 |.540.2 0.9110.12
[ 1150018 11409 H.2540.31
e D00, 1T 1AL 10 |EHEO 1
Mg 1.5240,19 1, 40028 0. 7040, 00
S 0,90, 18 10017 0 L 19

"Pickup boms from the ow and middle latitede (< 60°) oxiended inner
Hougee {present work)

Averape ol (e Tast amd slow solar wind abundances compiled by
et Stedger of ol [1997]  The anlar wind Ne abhundance we derived
from SWICS data using & sophisticsted compasition analysis developed
by M. A, Schwadron et al, (Technigues lor amalysie of data from time-

of-flight instroments, submitted to Jourmal af Geophysical Research,
1959h)

"Comgpiled by Keppler [ 1998],
YErrom are due 1o statistical uscertaintics only,

Near-solar plasma-dust PUI inner source contributes to lunar surface composition.
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Apparent dust peaks at 4 R, were seen at some wavelengths (e.g., near IR)
In 1966-67 to 1983 but not thereafter (Mann et al., 2004) — solar cycle effects?
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No diffraction limit for lunar
limb occultation
Limits on lunar dust

Solar Eclipse
April 1999

Resolution limited by internal
occulter diffraction and stray
light scattering

Stereo COR1
24 Jan. 2007




Lunar Earthrise
Kaguya / JAXA

Zodical Light
VS
Lunar Dust ?




Conclusions

Solar wind interaction imparts exogenic source of volatile
and some refractory mass flow from Sun to Moon surface

Direct primary plasma & SEP ion measurements, coupled
to those of sputtered pickup ions, support global mapping
of exogenic and endogenic components of lunar surface
composition

Orbiter hourly lunar limb occultation of solar disk from
LRO-type orbit would allow frequent periodic
measurements of near-solar plasma-dust dynamics and
composition in the “Inner Source” region contributing
pickup 1ons to solar wind bombardment of the lunar
surface. Lunar dust foreground effect needs more study.

The Moon can be an integral part of the Heliophysics
Global Observatory for solar and geospace observations




